Notes 2.6

Multiplication \& Division Properties

Multiplication \& Division Theorems

- Theorem 14: if segments (or angles) are congruent, then their like multiples are congruent.
- Theorem 15: if segments(or angles) are congruent, then their like divisors are congruent.
- Ie. If congruent segments (or angler) are bisected or trisected, then the parts of these segments (or angels) are congruent.

CAUTION!!!!

- Don't confuse Addition and Subtraction with Multiplication and Division!!
- Look for multiplication and division keywords.....
- midpoint, bisect, trisect......

Example: Division Property

Given: $\angle G A F \cong \angle H C E$
$\overrightarrow{A l}$ bisects $\angle G A F, \overrightarrow{C l}$ bisects $\angle H C E$
Prove: $\angle G A J \cong \angle H C l$

$$
\begin{array}{ll}
\text { 1. } & \angle G A F \cong \angle H C E \\
\text { 2. } & \overrightarrow{A J} \text { bisects } \angle G A F \\
\text { 3. } & \overrightarrow{C I} \text { bisects: } \angle H C E \\
\text { 4. } & \angle G A T \cong \angle H C I
\end{array}
$$

1. Giwen
2. Gven
3. Given
4. Division

Example: Multiplication Property

Given: $\overline{A D} \cong \overline{B E}$
D and E are midpoints of $\overline{A B}$ and $\overline{B C}$
Prove: $\overline{A B} \cong \overline{B C}$

Statements	Reasons
1. $\overline{A D} \cong \overline{B E}$	1. Given
2. D is mdpt of $\overline{A B}$	2. Given
3. E is mdpt of $\overline{B C}$	3. Given
4. $\overline{A B} \cong \overline{B C}$	4. (Multiplication)

BE ALERT!

- Notice that division OR multiplication is used whenever there is a DOUBLE USE of the words bisect, trisect or midpoint (or as in the last example, whenever a double use can be inferred from a "given"!)

