NOTES 2.5

ADDITION \& SUBRTACTION PROPERTIES

Segment Addition Theorems

- Theorem 8: If a segment is added to two congruent segments, the sums are congruent.
- Theorem 10: If congruent segments are added to congruent segments, then their sums are congruent.

Example: Theorems 8 and 10

- Given: $\mathrm{AD} \cong \mathrm{EC}$ and $\mathrm{BD} \cong \mathrm{BE} \ldots$. conclusion: ?

- Then $\mathrm{AB} \cong \mathrm{BC}$ (by addition ppty of segments)

Angle Addition Theorems

- Theoerm 9: If an angle is added to two congruent angles, the sums are congruent.
- Theorem 11: If congruent angles are added to ongruent angles, then their sumes are congruent.

Example: Theorems 9 and 11

- (Think . . .) If two pair of adjacent congruent angles are added together then the resulting angles must be congruent.

$$
\begin{aligned}
& \angle B A E \cong \angle B C D \text { and } \angle \mathrm{EAC} \cong \angle \mathrm{DCA} \text { then } \\
& \angle \mathrm{BAC} \cong \angle \mathrm{BCA}
\end{aligned}
$$

Notice that...

$$
\angle B A C-\angle E A C=\angle B A E \text { and } \angle B C A-\angle D C A=\angle B C D
$$

Segment and Angle Subtraction Properties

- Theorem 12: If a segment (or angle) is subtracted from congruent segments (or angles), the differences are congruent.
- Theorem 13: If congruent segments (or angles) are subtracted from congruent segments (or angles), the differences are congruent.

Example: Theorems 12 \& 13

Hints and Tricks

- An addition property is used whenever the resulting segments (or angles) are greater than what was given.
- A subtraction property was used whenever the resulting segments (or angles) are smaller than those that were given.

