# 2.1 Perpendicularity Symbol for perpendicular: $\perp$ 

Definition: Lines, rays, or segments that intersect at right angles are perpendicular.

## Perpendicular:

- Lines, Rays, or Segments that intersect at right angles
- Examples:

${ }^{* *} \ln \overline{D E} \perp \overline{E F}$ the little mark inside the angle (L) indicates $<$ DEF is a right angle. **

**This also means $\mathrm{m}<\mathrm{DEF}=90^{\circ *}$


## Can we assume a right angle??

## NO!!!!!

- Therefore, you cannot assume perpendicularity from a diagram either.


In $\triangle A B C$ it appears that $\overline{A B} \perp \overline{B C}$ BUT, we must be given this or be able to prove it, you CANNOT ASSUME it.

## Example 1:



Given: $\quad \overline{K J} \perp \overline{K M}$ $m \angle J K O$ is 4 times as large as $m \angle M K O$

Find: $m \angle J K O$
**Since $\overline{K J} \perp \overline{K M} \quad, m \angle J K O+m \angle M K O=90^{\circ}$ **

$$
\begin{aligned}
4 x+x & =90 \\
5 x & =90 \\
x & =18
\end{aligned} \quad \nearrow^{m \angle J K O}=4 x \quad \begin{aligned}
& =4(18) \\
& =72^{\circ}
\end{aligned}
$$

## Example 2:

Given: $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$

Prove: $\angle B \cong \angle C$

|  | Statement |
| :--- | :--- |
| 1. | $\overline{A B} \perp \overline{B C}$ |
| 2. | $\overline{D C} \perp \overline{B C}$ |
|  | $<A B C$ |
| is right angle |  |
|  | $<D C B$ is right angle |

3. $\angle B \cong \angle C$


Reason

1. Given
2. If 2 segs. are perpendicular, then they form a right angle
3. If 2 angles are right angles, then they are congruent. (or just Theorem 1)
